Fluorescence excitation spectroscopy was used to assess cellular turnover in human skin by monitoring changes of endogenous fluorescence. Epidermal proliferation was induced with α-hydroxy acids. Commercially available glycolic acid creams (8 and 4% wt/wt concentration) and a vehicle cream (placebo) were applied in a randomized double blinded fashion on subjects' forearms, twice daily for 21 days. Excitation spectra were recorded (excitation 250–360 nm, emission 380 nm) at days 0, 1, 3, 7, 10, 11, 14, 17 and 21. The 295 nm excitation band (assigned to tryptophan moieties) was used in this study as a marker for cellular proliferation. To further reduce the day-to-day variability of the skin fluorescence the intensity of the 295 nm band was normalized to the 334 nm band (assigned to collagen crosslinks). The fluorescence emission intensity from placebo-treated skin remained practically unchanged over the period of the measurements while the fluorescence intensity measured from the glycolic acid–treated skin increased monotonically with treatment. The rate of increase of the excitation intensity with treatment was found to be dose dependent. The epidermal 295 nm band may be used as a quantitative marker to monitor the rate of proliferation of epidermal keratinocytes noninvasively.